Eisenstein series for infinite-dimensional U-duality groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete U-duality Groups

Generators for the discrete U-duality groups of toroidally compactified M-theory in d ≥ 4 are presented and used to determine the d = 3 U-duality group. This contribution summarizes the results of [1].

متن کامل

The Elliptic Curve in the S-duality Theory and Eisenstein Series for Kac-moody Groups

We establish a relation between the generating functions appearing in the S-duality conjecture of Vafa and Witten and geometric Eisenstein series for KacMoody groups. For a pair consisting of a surface and a curve on it, we consider a refined generating function (involving G-bundles with parabolic structures along the curve) which depends on the elliptic as well as modular variables and prove i...

متن کامل

Transition: Eisenstein series on adele groups

[1] Despite contrary assertions in the literature, rewriting Eisenstein series, as opposed to more general automorphic forms, on adele groups does not use Strong Approximation. Strong Approximation does make precise the relation between general automorphic forms on adele groups and automorphic forms on SL2 and even on SLn, but rewriting these Eisenstein series does not need this comparison. Ind...

متن کامل

Computations of Eisenstein series on Fuchsian groups

We present numerical investigations of the value distribution and distribution of Fourier coefficients of the Eisenstein series E(z; s) on arithmetic and non-arithmetic Fuchsian groups. Our numerics indicate a Gaussian limit value distribution for a real-valued rotation of E(z; s) as Re s = 1/2, Im s → ∞ and also, on non-arithmetic groups, a complex Gaussian limit distribution for E(z; s) when ...

متن کامل

Pullbacks of Eisenstein Series on U(3, 3) and Non-vanishing of Shafarevich-tate Groups

In this paper we construct a pullback formula of a Siegel Eisenstein series on GU(3, 3) to GSp(4) × GL(2) and use it to study the Bloch-Kato conjecture for automorphic forms on GL(2). Let f ∈ S2k−2(SL2(Z)) be a normalized eigenform and let p > 2k− 2 be a prime so that p | Lalg(k, f). Then up to some reasonable hypotheses, we use this formula to construct a congruence between the Saito-Kurokawa ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2012

ISSN: 1029-8479

DOI: 10.1007/jhep06(2012)054